Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620034

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Animais , Suínos , Farnesiltranstransferase/metabolismo , Proteínas Virais/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Transdução de Sinais
2.
Nat Commun ; 15(1): 3422, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653965

RESUMO

Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.


Assuntos
Quinase do Linfoma Anaplásico , Dibenzocicloeptenos , Farnesiltranstransferase , GTP Fosfo-Hidrolases , MicroRNAs , Neuroblastoma , Piperidinas , Inibidores de Proteínas Quinases , Piridinas , Ensaios Antitumorais Modelo de Xenoenxerto , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Humanos , Animais , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mutação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino , Sinergismo Farmacológico
3.
Insect Mol Biol ; 33(2): 147-156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37962063

RESUMO

Geranylgeranyl pyrophosphate (diphosphate) synthase (GGPPS) plays an important role in various physiological processes in insects, such as isoprenoid biosynthesis and protein prenylation. Here, we functionally characterised the GGPPS from the major agricultural lepidopteran pests Spodoptera frugiperda and Helicoverpa armigera. Partial disruption of GGPPS by CRISPR in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential. Functional expression in vitro of Helicoverpa armigera GGPPS in Escherichia coli revealed a catalytically active enzyme. Next, we developed and optimised an enzyme assay to screen for potential inhibitors, such as the zoledronate and the minodronate, which showed a dose-dependent inhibition. Phylogenetic analysis of GGPPS across insects showed that GGPPS is highly conserved but also revealed several residues likely to be involved in substrate binding, which were substantially different in bee pollinator and human GGPPS. Considering the essentiality of GGPPS and its putative binding residue variability qualifies a GGPPS as a novel pesticide target. The developed assay may contribute to the identification of novel insecticide leads.


Assuntos
Praguicidas , Humanos , Animais , Abelhas/genética , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Filogenia , Ácido Zoledrônico
4.
Mol Cancer Ther ; 23(1): 14-23, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756579

RESUMO

Geranylgeranyl diphosphate synthase (GGDPS), the source of the isoprenoid donor in protein geranylgeranylation reactions, has become an attractive target for anticancer therapy due to the reliance of cancers on geranylgeranylated proteins. Current GGDPS inhibitor development focuses on optimizing the drug-target enzyme interactions of nitrogen-containing bisphosphonate-based drugs. To advance GGDPS inhibitor development, understanding the enzyme structure, active site, and ligand/product interactions is essential. Here we provide a comprehensive structure-focused review of GGDPS. We reviewed available yeast and human GGDPS structures and then used AlphaFold modeling to complete unsolved structural aspects of these models. We delineate the elements of higher-order structure formation, product-substrate binding, the electrostatic surface, and small-molecule inhibitor binding. With the rise of structure-based drug design, the information provided here will serve as a valuable tool for rationally optimizing inhibitor selectivity and effectiveness.


Assuntos
Inibidores Enzimáticos , Neoplasias , Humanos , Farnesiltranstransferase/química , Farnesiltranstransferase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/química , Terpenos/química , Terpenos/farmacologia , Prenilação de Proteína , Neoplasias/tratamento farmacológico
5.
J Immunol ; 211(4): 527-538, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37449905

RESUMO

IgE-mediated mast cell activation is a driving force in allergic disease in need of novel interventions. Statins, long used to lower serum cholesterol, have been shown in multiple large-cohort studies to reduce asthma severity. We previously found that statins inhibit IgE-induced mast cell function, but these effects varied widely among mouse strains and human donors, likely due to the upregulation of the statin target, 3-hydroxy-3-methylgutaryl-CoA reductase. Statin inhibition of mast cell function appeared to be mediated not by cholesterol reduction but by suppressing protein isoprenylation events that use cholesterol pathway intermediates. Therefore, we sought to circumvent statin resistance by targeting isoprenylation. Using genetic depletion of the isoprenylation enzymes farnesyltransferase and geranylgeranyl transferase 1 or their substrate K-Ras, we show a significant reduction in FcεRI-mediated degranulation and cytokine production. Furthermore, similar effects were observed with pharmacological inhibition with the dual farnesyltransferase and geranylgeranyl transferase 1 inhibitor FGTI-2734. Our data indicate that both transferases must be inhibited to reduce mast cell function and that K-Ras is a critical isoprenylation target. Importantly, FGTI-2734 was effective in vivo, suppressing mast cell-dependent anaphylaxis, allergic pulmonary inflammation, and airway hyperresponsiveness. Collectively, these findings suggest that K-Ras is among the isoprenylation substrates critical for FcεRI-induced mast cell function and reveal isoprenylation as a new means of targeting allergic disease.


Assuntos
Anafilaxia , Inibidores de Hidroximetilglutaril-CoA Redutases , Camundongos , Humanos , Animais , Receptores de IgE/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Farnesiltranstransferase/metabolismo , Mastócitos/metabolismo , Anafilaxia/metabolismo , Transdução de Sinais , Degranulação Celular , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Colesterol/metabolismo , Prenilação
6.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108334

RESUMO

Protein prenylation is an important protein modification that is responsible for diverse physiological activities in eukaryotic cells. This modification is generally catalyzed by three types of prenyl transferases, which include farnesyl transferase (FT), geranylgeranyl transferase (GGT-1) and Rab geranylgeranyl transferase (GGT-2). Studies in malaria parasites showed that these parasites contain prenylated proteins, which are proposed to play multiple functions in parasites. However, the prenyl transferases have not been functionally characterized in parasites of subphylum Apicomplexa. Here, we functionally dissected functions of three of the prenyl transferases in the Apicomplexa model organism Toxoplasma gondii (T. gondii) using a plant auxin-inducible degron system. The homologous genes of the beta subunit of FT, GGT-1 and GGT-2 were endogenously tagged with AID at the C-terminus in the TIR1 parental line using a CRISPR-Cas9 approach. Upon depletion of these prenyl transferases, GGT-1 and GGT-2 had a strong defect on parasite replication. Fluorescent assay using diverse protein markers showed that the protein markers ROP5 and GRA7 were diffused in the parasites depleted with GGT-1 and GGT-2, while the mitochondrion was strongly affected in parasites depleted with GGT-1. Importantly, depletion of GGT-2 caused the stronger defect to the sorting of rhoptry protein and the parasite morphology. Furthermore, parasite motility was observed to be affected in parasites depleted with GGT-2. Taken together, this study functionally characterized the prenyl transferases, which contributed to an overall understanding of protein prenylation in T. gondii and potentially in other related parasites.


Assuntos
Parasitos , Toxoplasma , Animais , Transferases/metabolismo , Parasitos/metabolismo , Toxoplasma/metabolismo , Farnesiltranstransferase/metabolismo , Prenilação de Proteína , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
G3 (Bethesda) ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37119806

RESUMO

The current understanding of farnesyltransferase (FTase) specificity was pioneered through investigations of reporters like Ras and Ras-related proteins that possess a C-terminal CaaX motif that consists of 4 amino acid residues: cysteine-aliphatic1-aliphatic2-variable (X). These studies led to the finding that proteins with the CaaX motif are subject to a 3-step post-translational modification pathway involving farnesylation, proteolysis, and carboxylmethylation. Emerging evidence indicates, however, that FTase can farnesylate sequences outside the CaaX motif and that these sequences do not undergo the canonical 3-step pathway. In this work, we report a comprehensive evaluation of all possible CXXX sequences as FTase targets using the reporter Ydj1, an Hsp40 chaperone that only requires farnesylation for its activity. Our genetic and high-throughput sequencing approach reveals an unprecedented profile of sequences that yeast FTase can recognize in vivo, which effectively expands the potential target space of FTase within the yeast proteome. We also document that yeast FTase specificity is majorly influenced by restrictive amino acids at a2 and X positions as opposed to the resemblance of CaaX motif as previously regarded. This first complete evaluation of CXXX space expands the complexity of protein isoprenylation and marks a key step forward in understanding the potential scope of targets for this isoprenylation pathway.


Assuntos
Alquil e Aril Transferases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Sequência de Aminoácidos , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Prenilação de Proteína , Proteínas/genética , Especificidade por Substrato
8.
Front Biosci (Landmark Ed) ; 28(3): 55, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37005749

RESUMO

BACKGROUND: Pseudoxanthoma elasticum (PXE) is a rare autosomal recessive disorder caused by mutations in the ATP-binding cassette sub-family C member 6 (ABCC6) gene. Patients with PXE show molecular and clinical characteristics of known premature aging syndromes, such as Hutchinson-Gilford progeria syndrome (HGPS). Nevertheless, PXE has only barely been discussed against the background of premature aging, although a detailed characterization of aging processes in PXE could contribute to a better understanding of its pathogenesis. Thus, this study was performed to evaluate whether relevant factors which are known to play a role in accelerated aging processes in HGPS pathogenesis are also dysregulated in PXE. METHODS: Primary human dermal fibroblasts from healthy donors (n = 3) and PXE patients (n = 3) and were cultivated under different culture conditions as our previous studies point towards effects of nutrient depletion on PXE phenotype. Gene expression of lamin A, lamin C, nucleolin, farnesyltransferase and zinc metallopeptidase STE24 were determined by quantitative real-time polymerase chain reaction. Additionally, protein levels of lamin A, C and nucleolin were evaluated by immunofluorescence and the telomere length was analyzed. RESULTS: We could show a significant decrease of lamin A and C gene expression in PXE fibroblasts under nutrient depletion compared to controls. The gene expression of progerin and farnesyltransferase showed a significant increase in PXE fibroblasts when cultivated in 10% fetal calf serum (FCS) compared to controls. Immunofluorescence microscopy of lamin A/C and nucleolin and mRNA expression of zinc metallopeptidase STE24 and nucleolin showed no significant changes in any case. The determination of the relative telomere length showed significantly longer telomeres for PXE fibroblasts compared to controls when cultivated in 10% FCS. CONCLUSIONS: These data indicate that PXE fibroblasts possibly undergo a kind of senescence which is independent of telomere damage and not triggered by defects of the nuclear envelope or nucleoli deformation.


Assuntos
Senilidade Prematura , Progéria , Pseudoxantoma Elástico , Humanos , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Senilidade Prematura/patologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/metabolismo , Pseudoxantoma Elástico/patologia , Farnesiltranstransferase/metabolismo , Metaloproteases/metabolismo , Zinco/metabolismo , Fibroblastos/metabolismo
9.
Plant Cell ; 35(6): 2293-2315, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36929908

RESUMO

Terpenoids constitute the largest class of plant primary and secondary metabolites with a broad range of biological and ecological functions. They are synthesized from isopentenyl diphosphate and dimethylallyl diphosphate, which in plastids are condensed by geranylgeranyl diphosphate synthases (GGPPSs) to produce GGPP (C20) for diterpene biosynthesis and by geranyl diphosphate synthases (GPPSs) to form GPP (C10) for monoterpene production. Depending on the plant species, unlike homomeric GGPPSs, GPPSs exist as homo- and heteromers, the latter of which contain catalytically inactive GGPPS-homologous small subunits (SSUs) that can interact with GGPPSs. By combining phylogenetic analysis with functional characterization of GGPPS homologs from a wide range of photosynthetic organisms, we investigated how different GPPS architectures have evolved within the GGPPS protein family. Our results reveal that GGPPS gene family expansion and functional divergence began early in nonvascular plants, and that independent parallel evolutionary processes gave rise to homomeric and heteromeric GPPSs. By site-directed mutagenesis and molecular dynamics simulations, we also discovered that Leu-Val/Val-Ala pairs of amino acid residues were pivotal in the functional divergence of homomeric GPPSs and GGPPSs. Overall, our study elucidated an evolutionary path for the formation of GPPSs with different architectures from GGPPSs and uncovered the molecular mechanisms involved in this differentiation.


Assuntos
Dimetilaliltranstransferase , Diterpenos , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Filogenia , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Diterpenos/metabolismo
10.
J Neurosci ; 43(14): 2615-2629, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36788031

RESUMO

Macroautophagy is a catabolic process that coordinates with lysosomes to degrade aggregation-prone proteins and damaged organelles. Loss of macroautophagy preferentially affects neuron viability and is associated with age-related neurodegeneration. We previously found that α-synuclein (α-syn) inhibits lysosomal function by blocking ykt6, a farnesyl-regulated soluble NSF attachment protein receptor (SNARE) protein that is essential for hydrolase trafficking in midbrain neurons. Using Parkinson's disease (PD) patient iPSC-derived midbrain cultures, we find that chronic, endogenous accumulation of α-syn directly inhibits autophagosome-lysosome fusion by impairing ykt6-SNAP-29 complexes. In wild-type (WT) cultures, ykt6 depletion caused a near-complete block of autophagic flux, highlighting its critical role for autophagy in human iPSC-derived neurons. In PD, macroautophagy impairment was associated with increased farnesyltransferase (FTase) activity, and FTase inhibitors restored macroautophagic flux through promoting active forms of ykt6 in human cultures, and male and female mice. Our findings indicate that ykt6 mediates cellular clearance by coordinating autophagic-lysosomal fusion and hydrolase trafficking, and that macroautophagy impairment in PD can be rescued by FTase inhibitors.SIGNIFICANCE STATEMENT The pathogenic mechanisms that lead to the death of neurons in Parkinson's disease (PD) and Dementia with Lewy bodies (LBD) are currently unknown. Furthermore, disease modifying treatments for these diseases do not exist. Our study indicates that a cellular clearance pathway termed autophagy is impaired in patient-derived culture models of PD and in vivo We identified a novel druggable target, a soluble NSF attachment protein receptor (SNARE) protein called ykt6, that rescues autophagy in vitro and in vivo upon blocking its farnesylation. Our work suggests that farnesyltransferase (FTase) inhibitors may be useful therapies for PD and DLB through enhancing autophagic-lysosomal clearance of aggregated proteins.


Assuntos
Doença de Parkinson , Humanos , Masculino , Camundongos , Animais , Feminino , Doença de Parkinson/metabolismo , Farnesiltranstransferase/metabolismo , alfa-Sinucleína/metabolismo , Autofagia/fisiologia , Mesencéfalo/metabolismo , Neurônios/metabolismo , Lisossomos/metabolismo , Proteínas SNARE/metabolismo , Hidrolases/metabolismo , Proteínas R-SNARE/metabolismo
11.
Microb Cell Fact ; 22(1): 17, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694175

RESUMO

BACKGROUND: The tobacco leaf-derived cembratriene-ol exhibits anti-insect effects, but its content in plants is scarce. Cembratriene-ol is difficult and inefficiently chemically synthesised due to its complex structure. Moreover, the titer of reported recombinant hosts producing cembratriene-ol was low and cannot be applied to industrial production. RESULTS: In this study, Pantoea ananatis geranylgeranyl diphosphate synthase (CrtE) and Nicotiana tabacum cembratriene-ol synthase (CBTS) were heterologously expressed to synthsize the cembratriene-ol in Escherichia coli. Overexpression of cbts*, the 1-deoxy-D-xylulose 5-phosphate synthase gene dxs, and isopentenyl diphosphate isomerase gene idi promoted the production of cembratriene-ol. The cembratriene-ol titer was 1.53-folds higher than that of E. coli Z17 due to the systematic regulation of ggpps, cbts*, dxs, and idi expression. The production of cembratriene-ol was boosted via the overexpression of genes ispA, ispD, and ispF. The production level of cembratriene-ol in the optimal medium at 72 h was 8.55-folds higher than that before fermentation optimisation. The cembratriene-ol titer in the 15-L fermenter reached 371.2 mg L- 1, which was the highest titer reported. CONCLUSION: In this study, the production of cembratriene-ol in E. coli was significantly enhanced via systematic optimization. It was suggested that the recombinant E. coli producing cembratriene-ol constructed in this study has potential for industrial production and applications.


Assuntos
Diterpenos , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Diterpenos/metabolismo , Farnesiltranstransferase/metabolismo
12.
Adv Biol (Weinh) ; 7(9): e2200150, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36599632

RESUMO

There are no known approved pharmacotherapies for non-alcoholic fatty liver disease (NAFLD) in the clinical setting. Although studies have provided substantial evidence that geranylgeranyl diphosphate synthase (GGPPS) is a potential therapeutic target for the treatment of NAFLD corresponding drug screening is rare. A GGPPS-targeted inhibitor is identified using a structure-based virtual small molecule screening method. The interaction of 4-AZ and GGPPS is detected by microscale thermophoresis. 4-AZ degradation of GGPPS by the ubiquitin-proteasome pathway is detected by western blotting. The anti-steatotic effect of 4-AZ in vivo is detected by CT. Lipid-related gene detection is detected by real-time PCR both in primary hepatocytes and mice. The compound inhibits the accumulation of lipids in primary hepatocytes and decreases lipogenic gene expression through GGPPS. Pharmacological studies show that 4-AZ can attenuate hepatic steatosis and improve liver injury in high-fat diet-induced mice. This data provides a novel application of 4-AZ NAFLD therapy, proving that the inhibition of GGPPS is a novel strategy for the treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , Complexo de Endopeptidases do Proteassoma , Ubiquitinas
13.
Clin Transl Med ; 13(1): e1167, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650113

RESUMO

Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores Enzimáticos , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Farnesiltranstransferase/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo
14.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674507

RESUMO

As one of the most imperative antioxidants in higher plants, carotenoids serve as accessory pigments to harvest light for photosynthesis and photoprotectors for plants to adapt to high light stress. Here, we report a small subunit (SSU) of geranylgeranyl diphosphate synthase (GGPPS) in Nicotiana tabacum, NtSSU II, which takes part in the regulation carotenoid biosynthesis by forming multiple enzymatic components with NtGGPPS1 and downstream phytoene synthase (NtPSY1). NtSSU II transcript is widely distributed in various tissues and stimulated by low light and high light treatments. The confocal image revealed that NtSSU II was localized in the chloroplast. Bimolecular fluorescence complementation (BiFC) indicated that NtSSU II and NtGGPPS1 formed heterodimers, which were able to interact with phytoene synthase (NtPSY1) to channel GGPP into the carotenoid production. CRISPR/Cas9-induced ntssu II mutant exhibited decreased leaf area and biomass, along with a decline in carotenoid and chlorophyll accumulation. Moreover, the genes involved in carotenoid biosynthesis were also downregulated in transgenic plants of ntssu II mutant. Taken together, the newly identified NtSSU II could form multiple enzymatic components with NtGGPPS1 and NtPSY1 to regulate carotenoid biosynthesis in N. tabacum, in addition to the co-expression of genes in carotenoids biosynthetic pathways.


Assuntos
Carotenoides , Farnesiltranstransferase/genética , Farnesiltranstransferase/metabolismo , /metabolismo , Carotenoides/metabolismo , Fotossíntese , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo
15.
Drug Dev Res ; 84(1): 62-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36433690

RESUMO

Rab GTPases are critical regulators of protein trafficking in the cell. To ensure proper cellular localization and function, Rab proteins must undergo a posttranslational modification, termed geranylgeranylation. In the isoprenoid biosynthesis pathway, the enzyme geranylgeranyl diphosphate synthase (GGDPS) generates the 20-carbon isoprenoid donor (geranylgeranyl pyrophosphate [GGPP]), which is utilized in the prenylation of Rab proteins. We have pursued the development of GGDPS inhibitors (GGSI) as a novel means to target Rab activity in cancer cells. Osteosarcoma (OS) and Ewing sarcoma (ES) are aggressive childhood bone cancers with stagnant survival statistics and limited treatment options. Here we show that GGSI treatment induces markers of the unfolded protein response (UPR) and triggers apoptotic cell death in a variety of OS and ES cell lines. Confirmation that these effects were secondary to cellular depletion of GGPP and disruption of Rab geranylgeranylation was confirmed via experiments using exogenous GGPP or specific geranylgeranyl transferase inhibitors. Furthermore, GGSI treatment disrupts cellular migration and invasion in vitro. Metabolomic profiles of OS and ES cell lines identify distinct changes in purine metabolism in GGSI-treated cells. Lastly, we demonstrate that GGSI treatment slows tumor growth in a mouse model of ES. Collectively, these studies support further development of GGSIs as a novel treatment for OS and ES.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma de Ewing , Animais , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Farnesiltranstransferase/metabolismo , Osteossarcoma/tratamento farmacológico , Sarcoma de Ewing/tratamento farmacológico , Terpenos
16.
Magy Onkol ; 67(3): 223-235, 2023 Sep 28.
Artigo em Húngaro | MEDLINE | ID: mdl-38484318

RESUMO

In silico studies raised the possibility that farnesyltransferase inhibitors (FTIs) may have antitumoral effects on KRAS mutant cancer cells. Accordingly, we have tested FTIs (tipifarnib and lonafarnib) in G12C mutant human cancer cell lines in vitro and in vivo. We have discovered that the combination of the two drugs has a synergistic antitumoral effect. Next, we have tested FTIs on G12D mutant human cancer cell lines and found that the combination has antitumoral effect in various preclinical cancer models. At last, we have also tested FTIs on G12V mutant human cancer cells and again we have detected antitumoral effects. We suggest that FTIs may have clinical relevance outside the HRAS mutant cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Farnesiltranstransferase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética
17.
ACS Chem Biol ; 17(10): 2945-2953, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36194691

RESUMO

Photoswitchable lipids have emerged as attractive tools for the optical control of lipid bioactivity, metabolism, and biophysical properties. Their design is typically based on the incorporation of an azobenzene photoswitch into the hydrophobic lipid tail, which can be switched between its trans- and cis-form using two different wavelengths of light. While glycero- and sphingolipids have been successfully designed to be photoswitchable, isoprenoid lipids have not yet been investigated. Herein, we describe the development of photoswitchable analogs of an isoprenoid lipid and systematically assess their potential for the optical control of various steps in the isoprenylation processing pathway of CaaX proteins in Saccharomyces cerevisiae. One photoswitchable analog of farnesyl diphosphate (AzoFPP-1) allowed effective optical control of substrate prenylation by farnesyltransferase. The subsequent steps of isoprenylation processing (proteolysis by either Ste24 or Rce1 and carboxyl methylation by Ste14) were less affected by photoisomerization of the group introduced into the lipid moiety of the substrate a-factor, a mating pheromone from yeast. We assessed both proteolysis and methylation of the a-factor analogs in vitro and the bioactivity of a fully processed a-factor analog containing the photoswitch, exogenously added to cognate yeast cells. Combined, these data describe the first successful conversion of an isoprenoid lipid into a photolipid and suggest the utility of this approach for the optical control of protein prenylation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Farnesiltranstransferase/metabolismo , Peptídeos/química , Prenilação de Proteína , Feromônios , Lipídeos , Esfingolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Protein Sci ; 31(10): e4414, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173156

RESUMO

Farnesyltransferase (FTase) is a heterodimeric enzyme, which catalyzes covalent attachment of the farnesyl group to target proteins, thus coordinating their trafficking in the cell. FTase has been demonstrated to be highly expressed in cancer and neurological diseases; hence considered as a hot target for therapeutic purposes. However, due to the nonspecific inhibition, there has been only one inhibitor that could be translated into the clinic. Importantly, it has been shown that phosphorylation of the α-subunit of FTase increases the activity of the enzyme in certain diseases. As such, understanding the impact of phosphorylation on dynamics of FTase provides a basis for targeting a specific state of the enzyme that emerges under pathological conditions. To this end, we performed 18 µs molecular dynamics (MD) simulations using complexes of (non)-phosphorylated FTase that are representatives of the farnesylation reaction. We demonstrated that phosphorylation modulated the catalytic site by rearranging interactions between farnesyl pyrophosphate (FPP)/peptide substrate, catalytic Zn2+ ion/coordinating residues and hot-spot residues at the interface of the subunits, all of which led to the stabilization of the substrate and facilitation of the release of the product, thus collectively expediting the reaction rate. Importantly, we also identified a likely allosteric pocket on the phosphorylated FTase, which might be used for specific targeting of the enzyme. To the best of our knowledge, this is the first study that systematically examines the impact of phosphorylation on the enzymatic reaction steps, hence opens up new avenues for drug discovery studies that focus on targeting phosphorylated FTase.


Assuntos
Alquil e Aril Transferases , Alquil e Aril Transferases/metabolismo , Catálise , Domínio Catalítico , Farnesiltranstransferase/química , Farnesiltranstransferase/metabolismo , Peptídeos/química , Fosforilação
19.
Phytomedicine ; 106: 154415, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070663

RESUMO

BACKGROUND: Ulcerative colitis (UC) is the most prevalent chronic inflammatory immune bowel disease. The modernization of lifestyle accompanied by the stress to cope with the competition has resulted in a new range of complications where stress became a critical contributing factor for many diseases, including UC. Hence there is an urgent need to develop a dual role in curtailing both systemic and neuroinflammation. Perillyl alcohol (POH) is a natural essential oil found in lavender, peppermint, cherries etc and has been widely studied for its strong anti-inflammatory, antioxidant and anti-stress properties. HYPOTHESIS/PURPOSE: POH regulates the various inflammatory signaling cascades involved in chronic inflammation by inhibiting farnesyltransferase  enzyme. Several studies reported that POH could inhibit the phosphorylation of  NF-κB, STAT3 and promote the endogenous antioxidant enzymes like Nrf2 via farnesyltransferase enzyme inhibition.  Also, the effects of POH against UC is not known yet. Thus, this study aims to explore the anti-ulcerative properties of POH on stress aggravated ulcerative colitis in C57BL/6 mice. METHODS: Ulcerative colitis was induced by duel exposure of chronic restraint stress (day 1 to day 28) and 2.5% dextran sulphate sodium (day8 to day14) in mice. POH treatment 100 and 200 mg/kg was administred from day14 ti day28 following oral route of administration. Disease activity index, colonoscopy, western blot analysis and histological analysis, neurotransmitter analysis and Gene expression studies were perofomerd to asses the anti-colitis effects of POH. RESULTS: The treatment reversed the oxidative stress and inflammatory response by inhibiting TLR4/NF-kB pathway, and IL-6/JAK2/STAT3 pathway in both isolated mice colons and brains. The inhibition of these pathways resulted in a decrease in pro-inflammatory cytokines like IL-6, IL-1ß and TNF-α. The treatment improved the physiological and histological changes with decreased ulcerations as examined by colonic endoscopy and Haematoxylin and Eosin staining. The treatment also improved the behavior response as it increased mobility time which was reduced by chronic restrained stress. This was due to increased satiety neurotransmitters like dopamine and serotonin and decreased cortisol in mice brains. CONCLUSION: These results infer that POH has significant anti-colitis activity on chronic restraint stress aggravated DSS-induced UC in mice.


Assuntos
Colite Ulcerativa , Óleos Voláteis , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Citocinas , Sulfato de Dextrana/efeitos adversos , Dopamina , Amarelo de Eosina-(YS)/efeitos adversos , Farnesiltranstransferase/metabolismo , Farnesiltranstransferase/farmacologia , Farnesiltranstransferase/uso terapêutico , Hidrocortisona/farmacologia , Interleucina-6/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Monoterpenos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óleos Voláteis/farmacologia , Serotonina/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Mol Neurodegener ; 17(1): 54, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987691

RESUMO

BACKGROUND: Amyloid plaque deposition and axonal degeneration are early events in AD pathogenesis. Aß disrupts microtubules in presynaptic dystrophic neurites, resulting in the accumulation of impaired endolysosomal and autophagic organelles transporting ß-site amyloid precursor protein cleaving enzyme (BACE1). Consequently, dystrophic neurites generate Aß42 and significantly contribute to plaque deposition. Farnesyltransferase inhibitors (FTIs) have recently been investigated for repositioning toward the treatment of neurodegenerative disorders and block the action of farnesyltransferase (FTase) to catalyze farnesylation, a post-translational modification that regulates proteins involved in lysosome function and microtubule stability. In postmortem AD brains, FTase and its downstream signaling are upregulated. However, the impact of FTIs on amyloid pathology and dystrophic neurites is unknown. METHODS: We tested the effects of the FTIs LNK-754 and lonafarnib in the 5XFAD mouse model of amyloid pathology. RESULTS: In 2-month-old 5XFAD mice treated chronically for 3 months, LNK-754 reduced amyloid plaque burden, tau hyperphosphorylation, and attenuated the accumulation of BACE1 and LAMP1 in dystrophic neurites. In 5-month-old 5XFAD mice treated acutely for 3 weeks, LNK-754 reduced dystrophic neurite size and LysoTracker-Green accumulation in the absence of effects on Aß deposits. Acute treatment with LNK-754 improved memory and learning deficits in hAPP/PS1 amyloid mice. In contrast to LNK-754, lonafarnib treatment was less effective at reducing plaques, tau hyperphosphorylation and dystrophic neurites, which could have resulted from reduced potency against FTase compared to LNK-754. We investigated the effects of FTIs on axonal trafficking of endolysosomal organelles and found that lonafarnib and LNK-754 enhanced retrograde axonal transport in primary neurons, indicating FTIs could support the maturation of axonal late endosomes into lysosomes. Furthermore, FTI treatment increased levels of LAMP1 in mouse primary neurons and in the brains of 5XFAD mice, demonstrating that FTIs stimulated the biogenesis of endolysosomal organelles. CONCLUSIONS: We show new data to suggest that LNK-754 promoted the axonal trafficking and function of endolysosomal compartments, which we hypothesize decreased axonal dystrophy, reduced BACE1 accumulation and inhibited amyloid deposition in 5XFAD mice. Our results agree with previous work identifying FTase as a therapeutic target for treating proteinopathies and could have important therapeutic implications in treating AD.


Assuntos
Amiloide , Amiloidose , Farnesiltranstransferase , Doença de Alzheimer/metabolismo , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Ácido Aspártico Endopeptidases/metabolismo , Axônios/efeitos dos fármacos , Axônios/patologia , Modelos Animais de Doenças , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/metabolismo , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...